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Abstract: Time invariant models describing constant velocity and constant acceleration movements in two 

dimensions are presented. Mobile position tracking is realized for position estimation or prediction using steady 

state Kalman filter, concluding that the obtained estimates are very close to the real position.  
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1.   INTRODUCTION 

The Global Positioning System (GPS) is the most popular positioning technique in navigation providing reliable mobile 

location estimates in many applications [1]-[4]. Thus wireless location systems offering reliable mobile location estimates 

have been studied over the past few years. The location of the used is determined using one or more base stations. The 

position accuracy is affected by interference sources, leading to the need to develop techniques to estimate the location of 

the user. Kalman filter has been used for Global Systems for Mobile (GSM) position tracking in two dimensions [5]. 

Kalman and Lainiotis filters have been used in [6] where the GSM position tracking was derived using models that 

describe the movement in x-axis and y-axis simultaneously or separately. Also, Mobile Position Tracking in three 

dimensions using Kalman and Lainiotis filters is presented in [7]. 

In this paper estimation as well prediction algorithms are presented using the steady state Kalman filter. The novelty of 

the paper is the derivation of steady state estimation and prediction algorithms. It is shown that the position estimation and 

prediction are reliable. It is also shown that estimation calculation burden equals the prediction calculation burden; this 

steady state estimation/prediction calculation is much less than the calculation burden of the Kalman filter. 

The paper is organized as follows: In Section 2, we present two models for Mobile Position Tracking (MPT), which 

describe constant velocity and constant acceleration movements in two dimensions. In Section 3, we present the steady 

state Kalman filter. In Section 4, we present steady state prediction algorithms. In Section 5, simulation results are 

presented. Finally, Section 6 summarizes the conclusions. 

1.1 time invariant models: 

In this paper we consider two models for Mobile Position Tracking (MPT), which describe constant velocity and constant 

acceleration movements in two dimensions. We assume continuous as well discrete process models to describe the 

constant velocity and the constant acceleration movements, where the primary element of the state is the position and the 

measurement is a noisy position. 
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1.2 general continuous models: 

The General Continuous Model consists of the dynamic and the statistical model. 

The dynamic model expresses the relationship between state and the measurement and is described by the following state 

space equations: 

( ) ( ) ( )x t x t Gw t                (1) 

( ) ( ) ( )z t x t v t          (2) 

where x(t) is the nx1 state vector, z(t) is the mx1 measurement vector, Φ is the nxn transition matrix, H is the mxn output 

matrix, w(t) is the state noise and v(t) is the measurement noise at time t. 

The statistical model expresses the nature of the state and the measurements. Basic assumption is that the state and the 

measurement noises are Gaussian zero-mean white random processes with known covariance matrices Q and R, 

respectively. The initial state x(0) is a Gaussian random variable with mean x0 and covariance P0. Also, the state and the 

measurement noises and the initial state are independent. 

2.   GENERAL DISCRETE MODEL 

The General Discrete Model consists of the dynamic and the statistical model. 

The dynamic model expresses the relationship between state and the measurement and is described by the following state 

space equations: 

( 1) ( ) ( )x k Fx k w k         (3) 

( ) ( ) ( )z k Hx k v k        (4) 

where x(k) is the nx1 state vector, z(k) is the mx1 measurement vector, F is the nxn transition matrix, H is the mxn output 

matrix, w(k) is the state noise and v(k) is the measurement noise at time k. 

The statistical model expresses the nature of the state and the measurements. Basic assumption is that the state and the 

measurement noises are Gaussian zero-mean white random processes with known covariance matrices Q and R, 

respectively. The initial state x(0) is a Gaussian random variable with mean x0 and covariance P0. Also, the state and the 

measurement noises and the initial state are independent. 

2.1. Constant velocity model: 

The constant velocity model describes the constant velocity movement in two dimensions separately. We start with the 

constant velocity movement in one dimension.  

Continuous Model: 

The velocity is constant. The state vector has two elements, the position and the velocity and the measurement vector has 

one element, the noisy position.  

( ) ( ) ( )
( ) 0 1 ( ) 0

( )
( ) 0 0 ( ) 1

x t x t Gw t
s t s t

w t
t t 

   
       

        
       

   

 ( ) ( ) ( )
( )

( ) 1 0 ( )
( )

z t x t v t
s t

z t v t
t

   
 

  
 

 

Discrete Model: 

The velocity is constant. The state vector has two elements, the position and the velocity and the measurement vector has 

one element, the noisy position.  

The discretization of the continuous time model [8]: 
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leads to the discrete time model 

( 1) 1 ( )
( 1) ( ) ( ) ( )

( 1) 0 1 ( )

s k t s k
x k Fx k w k w k

k k 

      
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     
 

 
( )

( ) ( ) ( ) ( ) 1 0 ( )
( )

s k
z k Hx k v k z k v k

k

 
     

 
 

Then, the discrete time model parameters are: 

 
3 21 1

23 2

21

2

2

1

0 1

1 0

( ) ( )

( )
q
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t
F
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t t
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


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
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     (5) 

The model describes the movement in one axis (x-axis or y-axis). The state vector is of dimension  n=2 and contains the 

position and the velocity:  ( ) ( ) ( )
T

x k s k k . The measurement vector is of dimension m=1 and contains the measured 

noisy position z(k).  

We are able to describe the movement in two axis using two separate state vectors:  ( ) ( ) ( )
T

x x xx k s k k  for the x-axis 

and ( ) ( ) ( )
T

y y yx k s k k     for the y-axis. 

2.2. Constant acceleration model: 

The constant acceleration model describes the constant acceleration movement in two dimensions separately. We start 

with the constant acceleration movement in one dimension.  

Continuous Model: 

The acceleration is constant. The state vector has three elements, the position, the velocity and the acceleration and the 

measurement vector has one element, the noisy position.  

( ) ( ) ( )

( ) 0 1 0 ( ) 0

( ) 0 0 1 ( ) 0 ( )

( ) 0 0 0 ( ) 1

x t x t Gw t

s t s t

t t w t

t t

 

 

   

       
       

 
       
              

   

 ( ) ( ) ( )

( )

( ) 1 0 0 ( ) ( )

( )

z t x t v t

s t

z t t v t

t





   

 
 

 
 
  

  



ISSN 2348-1196 (print) 
International Journal of Computer Science and Information Technology Research  ISSN 2348-120X (online) 

Vol. 4, Issue 3, pp: (261-272), Month:  July - September 2016, Available at: www.researchpublish.com 
 

Page | 264  
Research Publish Journals 

Discrete Model: 

The velocity is constant. The state vector has three elements, the position, the velocity and the acceleration and the 

measurement vector has one element, the noisy position.  

The discretization of the continuous time model [8]: 
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leads to the discrete time model 
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Then, the discrete time model parameters are: 

 
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              (6) 

The model describes the movement in one axis (x-axis or y-axis). The state vector is of dimension n=3 and contains the 

position, the velocity and the acceleration:  ( ) ( ) ( ) ( )
T

x k s k k k  . The measurement vector is of dimension m=1 

and contains the measured noisy position z(k).  

We are able to describe the movement in two axis using two separate state vectors:  

 ( ) ( ) ( ) ( )
T

x x x xx k s k k k   for the x-axis and ( ) ( ) ( ) ( )
T

y y y yx k s k k k      for the y-axis. 
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3.   POSITION ESTIMATION USING STEADY STATE KALMAN FILTER 

Concerning the position estimation the aim is to estimate the state variable, using the Kalman filter [9], which is the most 

well-known algorithm that solve the estimation problem by computing the estimate value x(k/k) of the state vector and the 

corresponding estimation error covariance matrix P(k/k) at time k. For time invariant systems, where the system transition 

matrix, the output matrix, the plant and measurement noise covariance matrices are constant, the resulting time invariant 

Kalman filter takes the following form: 

Time Invariant Kalman filter: 

 

 

1

( 1 / ) ( / )

( 1 / ) ( / )

( 1) ( 1 ) ( 1 )

( 1 / 1) ( 1) ( 1 / ) ( 1) ( 1)

( 1 / 1) ( 1) ( 1 / )

T

T T

x k k Fx k k

P k k Q FP k k F

K k = P k / k H HP k / k H + R

x k k I K k H x k k K k z k

P k k I K k H P k k



 

  

  

        

     

          (7) 

For k=0,1,… , with initial conditions  x(0/0)=x0,P(0/0)=P0. 

For time invariant systems, it is well known [9] that if pair [F H
T
] is completely detectable and the pair [F

T
 Q] is 

completely stabilizable, then the prediction estimation error covariance matrix tends to a constant value as time tends to 

infinity. Thus there exists a unique steady state value Pp of the prediction error covariance matrix; there also exists a 

unique steady state value Pe of the estimation error covariance matrix and a unique steady state value K of the Kalman 

filter gain. These values remain constant after the steady state time is reached. In this case, the resulting discrete time 

steady state Kalman filter takes the following form: 

Steady state Kalman filter: 

( 1/ 1) ( / ) ( 1)x k k Ax k k Bz k             (8) 

for k=0,1,…  

with initial condition x(0/0)=x0 

where the matrices  

  andA I KH F B K          (9) 

are calculated off-line by first solving the corresponding discrete time Riccati equation [9]-[14]: 

1
T T T T

p p p p pP Q FP F FP H HP H R HP F


          (10) 

and then calculating the steady state Kalman filter gain 

1
[ ]

T T

p pK P H HP H R


          (11) 

The steady state estimation error covariance is 

 
1

T T

e p p p p pP I KH P P P H HP H R HP


            (12) 

4.   POSITION PREDICTION USING STEADY STATE KALMAN FILTER 

Concerning the position prediction, the aim is to predict the state variable N time units ahead of the present time (N≥1), 

i.e. to compute the prediction x(k+N/k) of the state vector at time k+N, given the measurements till time k. 

 The one step prediction (N=1) is given by the Kalman filter equations [9]: 

( 1/ ) ( / )x k k Fx k k         (13)               



ISSN 2348-1196 (print) 
International Journal of Computer Science and Information Technology Research  ISSN 2348-120X (online) 

Vol. 4, Issue 3, pp: (261-272), Month:  July - September 2016, Available at: www.researchpublish.com 
 

Page | 266  
Research Publish Journals 

It is clear that the computation of the one step prediction requires the knowledge of the estimation x(k/k) of the state 

vector at time k, which can be derived using the steady state Kalman filter. 

The multiple steps, N, (N≥2), prediction is given by the equations [9]: 

1( / ) ( 1/ )Nx k N k F x k k         (14) 

It is clear that the computation of the prediction requires the knowledge of the estimation, which can be derived using the 

steady state Kalman filter. 

One step prediction: 

In the steady state case, from (8) and (13), we take: 

   ( 1/ ) ( / ) ( / 1) ( ) ( / 1) ( )I KH I KHx k k Fx k k F x k k Kz k F x k k FKz k            

The resulting steady state one step prediction algorithm takes the following form: 

1 1( 1/ ) ( / 1) ( )x k k A x k k B z k                                                                                         (15) 

for k=1,2,…, with initial condition 
0

(1/ 0) (0 / 0)x Fx Fx  , 

where 

 1

1 1andI KHA FAF F B FB FK
                                                      (16) 

Two steps prediction: 

From the time invariant two step prediction algorithm, we take: 

 1 1

1

1 1

1

1 1

( 2 / ) ( 1/ ) ( / 1) ( )

( / 1) ( )

( 1/ 1) ( )

x k k Fx k k F A x k k B z k

FA F Fx k k FB z k

FA F x k k FB z k





     

  

   

 

The resulting steady state two steps prediction algorithm takes the following form: 

2 2( 2 / ) ( 1/ 1) ( )x k k A x k k B z k                                              (17) 

for k=1,2,…, with initial condition 0

2 2
(2 / 0) (1 / 0) (0 / 0)x Fx F x F x   ,   

where 

 2 2 2 1 2 2

2 2andI KHA F AF F F B F B F K 
    .                          (18) 

Multiple steps prediction: 

The resulting steady state multiple steps prediction algorithm takes the following form: 

( / ) ( 1/ 1) ( )N Nx k N k A x k N k B z k                     (19)                                

for k=1,2,… and N≥2, with initial condition 0
( / 0) (0 / 0)

N N
x N F x F x  , 

where 

  ( 1) andN N N N N N

N NI KHA F AF F F B F B F K  
    .                                      (20) 

It is obvious that the matrices in (19) are calculated off-line by first solving the corresponding discrete time Riccati 

equation (10) and then calculating the steady state Kalman filter gain using (11). 

 



ISSN 2348-1196 (print) 
International Journal of Computer Science and Information Technology Research  ISSN 2348-120X (online) 

Vol. 4, Issue 3, pp: (261-272), Month:  July - September 2016, Available at: www.researchpublish.com 
 

Page | 267  
Research Publish Journals 

5.   SIMULATION 

5.1 Constant velocity model: 

The use of the constant velocity model, which describes the movement in x-axis and y-axis separately, requires the use of 

two steady state Kalman filters in order to compute the position estimation for each movement. Similarly, the position 

prediction requires the use of two steady state predictions algorithms. The two estimation algorithms as well the two 

prediction algorithms can be implemented in parallel. 

Simulation parameters:  

Velocity: ( ) 20, ( ) 30x yt t   . 

Model parameters: 

 
3 21 1
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q q

r r
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t t
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t t

R

 

 

 
  
 



  
  

  

 

 

Discretization time Δt=1 and initial condition x(0/0)=0. 

Estimation: 

The position estimation using steady state Kalman filter for the constant velocity model is depicted in Figure 1. The real 

position and the steady state Kalman filter estimation are plotted. 

 

Fig 1. Position estimation for constant velocity movement 

Simulation was performed:  

- for various values of the discretization time  

- for various values of the measurements noise covariance concerning the trust of the measurements  

- for various velocities Comments. 

The steady state Kalman filter produces satisfying estimates. 
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The discretization time does not affect the filter. 

The trust of the measurements affects the filters: the filters produce worse estimates as measurements noise covariance 

increases. 

The movement’s velocity does not affect the filter. 

Prediction: 

The position prediction using steady state prediction algorithms for the constant velocity model is depicted in Figure 2. 

The real position and the one step prediction are plotted. 

 

Fig.2. Position prediction for constant velocity movement 

Simulation was performed:  

- for various values of the steps prediction ahead of the present time  

- for various values of the discretization time  

- for various values of the measurements noise covariance concerning the trust of the measurements  

- for various velocities  

Comments. 

The steady state prediction algorithms for small time units ahead of the present time produce satisfying predictions 

compared to one step prediction. 

The discretization time does not affect the prediction algorithms. 

The trust of the measurements affects the prediction algorithms: the prediction algorithms produce worse predictions as 

measurements noise covariance increases. 

The movement’s velocity does not affect the prediction algorithms. 

5.2 Constant acceleration model: 

The use of the constant acceleration model, which describes the movement in x-axis and y-axis separately, requires the 

use of two steady state Kalman filters in order to compute the position estimation for each movement. Similarly, the 

position prediction requires the use of two steady state predictions algorithms. The two estimation algorithms as well the 

two prediction algorithms can be implemented in parallel. 

Simulation parameters:  

Acceleration: ( ) 2, ( ) 3x yt t   . 
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Model parameters: 
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Discretization time Δt=1 and initial condition x(0/0)=0. 

Estimation: 

The position estimation using steady state Kalman filter for the constant acceleration model is depicted in Figure 3. The 

real position and the steady state Kalman filter estimation are plotted. 

 

Fig.3. Position estimation for constant acceleration movement 

Simulation was performed:  

- for various values of the discretization time  

- for various values of the measurements noise covariance concerning the trust of the measurements  

- for various velocities Comments. 

The steady state Kalman filter produces satisfying estimates. 

The discretization time does not affect the filter. 

The trust of the measurements affects the filters: the filters produce worse estimates as measurements noise covariance 

increases. 

The movement’s velocity does not affect the filter. 

Prediction: 

The position prediction using steady state prediction algorithms for the constant acceleration model is depicted in Figure 

4. The real position and the one step prediction are plotted. 
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Fig. 4. Position prediction for constant acceleration movement 

Simulation was performed:  

- for various values of the steps prediction ahead of the present time  

- for various values of the discretization time  

- for various values of the measurements noise covariance concerning the trust of the measurements  

- for various velocities Comments. 

The steady state prediction algorithms for small time units ahead of the present time produce satisfying predictions 

compared to one step prediction. 

The discretization time does not affect the prediction algorithms. 

The trust of the measurements affects the prediction algorithms: the prediction algorithms produce worse predictions as 

measurements noise covariance increases. 

The movement’s velocity does not affect the prediction algorithms. 

5.3 Position estimation and prediction absolute average error: 

In order to understand the behavior of the steady state estimation and prediction algorithms, the percent absolute average 

error for the two models are presented in Table 1. 

Table 1. Percent absolute average error of position estimation and prediction 

estimation 

steady state 

Kalman filter 

constant  

velocity 

constant  

acceleration 

0.0111 0.0077 

Prediction 

prediction steps 
constant  

velocity 

constant  

acceleration 

1 0.0142 0.0146 

2 0.0156 0.0173 

3 0.0165 0.0189 

4 0.0172 0.0200 

5 0.0177 0.0209 
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5.4 Position estimation and prediction calculation burden: 

The steady state Kalman filter and the steady state prediction algorithms are iterative algorithms. Thus, we are interested 

in calculating their per iteration calculation burden required for the on-line calculations; the calculation burden of the off-

line calculations (initialization process) is not taken into account. The coefficients of the steady state Kalman filter in (9) 

are calculated off-line. The coefficients of the steady state prediction algorithms in and (20) are also calculated off-line. 

Table 2 summarizes the per-iteration calculation burden of the steady state Kalman filter and the steady state prediction 

algorithms, computed using the ideas in [15].  

Table 2. Per-iteration calculation burden of position estimation and prediction algorithms 

estimation 

matrix operation dimensions calculation burden 

( / )Ax k k     * 1n n x   22n n  

( 1)Bz k      * 1n m m   2nm n  

( 1/ 1) ( / ) ( 1)x k k Ax k k Bz k         1 1n n    n  

total calculation burden 22 2n nm n   

prediction 

matrix operation dimensions calculation burden 

( / 1)NA x k k      * 1n n x   22n n  

( 1)NB z k      * 1n m m   2nm n  

( / ) ( / 1) ( )N Nx k N k A x k k B z k        1 1n n    n  

total calculation burden 22 2n nm n   

Note that the per-iteration calculation burden of all prediction algorithms is constant since it is independent of the 

prediction steps. Note also that the per-iteration calculation burden of estimation equals the per-iteration calculation 

burden of prediction. 

It is obvious that the per-iteration calculation burden of the estimation and prediction algorithms depends on the state 

vector dimension n and the measurement vector dimension m. The matrix operations involved in steady state 

estimation/prediction algorithms are matrix addition and matrix multiplication; thus the steady state estimation/prediction 

has complexity  2
max( ),O n nm . On the other hand, matrix inversion is involved in the Kalman filter equations (7); thus 

the Kalman filter has complexity  3 3
max( ),O n m  [15]. Hence, the derived steady state estimation/prediction algorithms 

are much faster than the Kalman filter. 

In the constant velocity model, the state vector is of dimension n=2 and the measurement vector is of dimension m=1. In 

the constant acceleration model, the state vector is of dimension n=3 and the measurement vector is of dimension m=1. 

Thus the per-iteration calculation burden of position estimation/prediction is 10vCB   for the constant velocity model 

and 21aCB   for the constant acceleration model. In both models the estimation/prediction can be derived using two 

estimation/prediction algorithms sequentially or in parallel, one for the x-axis and the other for the y-axis. 

6.   CONCLUSIONS 

Two models for Mobile Position Tracking (MPT), which describe constant velocity and constant acceleration movements 

in two dimensions, were presented. Steady state estimation and prediction algorithms based on the steady state Kalman 

filter were derived. Simulation results show that the position estimation and prediction are reliable. It was shown that the 

estimation calculation burden equals the prediction calculation burden; this steady state estimation/prediction calculation 

is much less than the calculation burden of the Kalman filter. 

Thus Mobile Position Tracking (MPT) can be realized for position estimation or prediction using using two steady state 

estimation/prediction algorithms sequentially or in parallel, one for the x-axis and the other for the y-axis. The 

estimation/prediction algorithms compute estimates that are very close to the real position and are faster than classical 

Kalman filter. 
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